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Abstract. Nowadays, websites use a variety of recommendation systems to decide the
content to display to their visitors. In this work, we use a multiarmed bandit approach to
dynamically select the combination of house ads to exhibit to a heterogeneous set of cus-
tomers visiting the website of a large retailer. House ads correspond to promotional infor-
mation displayed on the website to highlight some specific products and are an important
marketing tool for online retailers. As the number of clicks they receive not only depends
on their own attractiveness but also on how attractive are other products displayed around
them, we decide about complete collections of ads that capture those interactions. More-
over, as ads can wear out, in our recommendations we allow for nonstationary rewards.
Furthermore, considering the sparsity of customer-level information, we embed a deep
neural network to provide personalized recommendations within a bandit scheme. We
tested our methods in controlled experiments where we compared them against decisions
made by an experienced team of managers and the recommendations of a variety of other
bandit policies. Our results show a more active exploration of the decision space and a sig-
nificant increment in click-through and add-to-cart rates.
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1. Introduction

One of the most important challenges of the digital rev-
olution is how to create and manage relevant content.
Information sites such as digital newspapers and social
network platforms are constantly applying a variety of
methods to craft and select suitable content for their
audiences. In retailing, this challenge translates into
deciding an adequate marketing mix for each customer.
For example, retailers must choose an attractive assort-
ment, adequate promotions, and the right communica-
tion channel. Among all decisions that firms must
make in their daily operations, we focus on the
dynamic selection of house ads. House ads or internal
links correspond to promotional information displayed
on the retailer's website to highlight some specific
products or category of products (Goic et al. 2018).
House ads are an important component of the web
design for most online retailers not only because they
can have a direct impact in short-term sales but also
because they can provide more consistent product
offering that positively impacts customer satisfaction.
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In recent years, many websites have started to use
different recommendation systems to decide the con-
tent to display to their visitors, including association
rules (Carmona et al. 2012), matrix factorization (Koren
et al. 2009), and supervised learning (Agrawal et al.
2013). In this work, we address the problem of selecting
a collection of house ads to exhibit in the homepage of
a large retailer’s transactional website to move custom-
ers forward in their purchase funnels. The problem is
dynamic in nature for several reasons. For example, the
set of available ads and the context in which those ads
are displayed change over time. Furthermore, the effec-
tiveness of a given ad can change over time because its
attractiveness wears out (Braun and Moe 2013). A com-
mon practice in industry to deal with this dynamic
problem is to decompose it in two stages: in an initial
stage the decision maker evaluates the potential effec-
tiveness of each ad by using randomized experimenta-
tion and then, in a second stage, marketers choose to
display a combination of the best ads. However, it has
been shown that this practice might be suboptimal
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because it does not explicitly consider the opportunity
costs of the learning phase (Feit and Berman 2019).

A more efficient approach to deal with this problem
is treating it as a multiarmed bandit (MAB) problem
to define a strategy that minimizes the total expected
regret (Vermorel and Mohri 2005, Villar et al. 2015). In
a MAB framework, one must select a sequence of
actions to maximize a cumulative reward with an
imperfect knowledge of the performance of each
action. By adopting this approach, we can explicitly
address the well-known exploration-exploitation trade-
off, where we are simultaneously interested in learning
what type of ads perform better and maximize the
performance of the website by showing the best ads.
Starting from the pioneering work from Robbins
(1952), a variety of MAB policies have been proposed
to deal with different problem settings (Kuleshov and
Precup 2014). However, there are important features
of the house ads problem that require us to deviate
from the standard MAB policies. First, the identifica-
tion of the most relevant content to show in the home
page is customer-specific and therefore the set of
house ads to display should depend on customer pref-
erences. To accommodate this personalization, we
make the rewards associated to each recommendation
to be dependent on a vector of observable characteris-
tics, which in the literature of MAB is commonly
known as contfextual bandits (Li et al. 2010). Our im-
plementation of the context is based on a flexible
mapping to connect customer characteristics to the
rewards associated to each ad. This mapping not only
allows us to provide personalized recommendations,
but it also helps to learn about customer preferences
with sparse transactional histories. In terms of the
methodology, we connect customer level characteristics
with personalized ads using neural networks. Despite
losing some interpretability of intermediate results, we
are mostly interested in providing a useful operational
solution and therefore we believe this approach is
instrumental for those purposes. The use of this tech-
nique requires us to depart from the standard super-
vised learning paradigm usually used to calibrate the
underlying network and leads us to design a reinforce-
ment learning version for the calibration. Reinforcement
learning has been used in other domains (Mnih et al.
2013), but we are not aware of their use for training
neural networks in the context of online advertising.

A second distinctive feature of our problem is its
combinatorial nature. Unlike the traditional advertising
display problem where a single slot is available to
exhibit an ad (Schwartz et al. 2017), in our setting we
need to decide an assortment of ads to be exhibited.
By considering the whole list, we can incorporate
business rules to define the combinations of ads that
are feasible to be displayed simultaneously. More
importantly, we can learn about what combinations

are more effective. Although the existence of context
effects are abundant in marketing literature (Simon-
son and Tversky 1992, Tversky and Simonson 1993,
Chernev and Hamilton 2009), there is little work on
practical methods to learn about those contextual
effects with real size assortments. The approach we
use, where we decide about the complete set to be dis-
played, captures direct interaction effects between
ads. However, we do not have complete control over
other elements on the website. Consider the case of a
company running a national level campaign that is
featured in the homepage. This campaign might have
an impact in the performance of the house ads. For
instance, if the retailer is running a campaign with a
deep discount on mobile devices, a house ad promot-
ing mobile accessories might have larger conversion
rates. Other elements that can have an effect on the
performance of a given ad include competition and
the marketing mix in other channels (Verhoef et al.
2015). To account for these factors, we use nonstation-
ary policies allowing for temporal variations in the
rewards associated to each ad.

In summary, we developed a contextual MAB model
with flexible learning to dynamically determine the list of
house ads to display in the homepage of an electronic
retailer to maximize the accumulated click-through rate
of the ads. Although part of previous literature has
focused on providing theoretical guarantees for simpler
bandit policies, we use state-of-the-art tools to provide
recommendations in the context of the House Ads prob-
lem. We perform a comprehensive simulation study to
show that all the key components of our methodological
proposal are useful to learn about the effectiveness of
house ads and then we tested our methods in two con-
trolled experiments where we compared them against
decisions made by an experienced team of managers.
Our results show that personalizing is associated with
strong dominance in click-through and add-to-cart rates.
Despite of focusing on the House Ads problem, several
components of our model can be also applied to guide
decision making in other settings beyond advertising.
This is for example the case of pricing and assortment
decisions that share several the key components of our
methodological proposal, such as dynamic learning, per-
sonalization and cross-product effects.

The rest of the article is organized as follows. In Sec-
tion 2, we review the relevant literature on online
advertising and multiarmed bandit methods. In Section
3, we outline the main components of the decision
problem and provide the primitives of our modeling
approach. Next, we discuss how our model performs,
first using simulated data (Section 3.3) and then in a
field experiment with real display decisions (Section 4).
In Section 5, we conduct a series of postexperimental
evaluations to further illustrate the main drivers of the
effectiveness of our bandit approach. We close with
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Section 6 with final conclusions and directions for
future research.

2. Literature Review

In this research, we use multiarmed bandits to dynami-
cally decide a sequence of house ads to display in the
homepage of an online retailer. We first review the
methodological aspects of multiarmed bandit and then
we discuss the literature on the substantive application.

From a methodological point of view, MABs are a
widely used approach to solve the tension between the
cost of acquisition of new information and the short-
term benefits of using existing information. Although
the foundations of MABs had been established a long
time ago (Thompson 1933, Robbins 1952), in recent years,
MABs have gain a renovated attention as a mechanism to
provide feasible solutions to large stochastic dynamic
problems. The algorithmic properties of MAB have been
widely studied in the fields of statistics, computer science
and operations research providing detailed characteriza-
tions of the optimality of different bandit policies for a
variety of problem configurations including the case of
combinatorial decisions (Chen et al. 2013, Ontanén 2017)
and nonstationary rewards (Koulouriotis and Xantho-
poulos 2008, Besbes et al. 2014) that we include in our
model. Although previous research have considered
these components in isolation, we are not aware of pre-
vious work that combines them all in a single MAB
algorithm.

Regarding temporal evolution of rewards, although
most of the MAB literature focuses on the stationary
case, recent efforts have provided feasible solutions
for the case of changing environments. For instance,
Besbes et al. (2014) analyze the complexity of general
class of problems with bounded nonstationary rewards.
In our application, following the literature on the wear-
out of online advertising (Chae et al. 2019), we expect
the effectiveness of a given banner might decrease with
more expositions, which is commonly known as rotting
bandits (Seznec et al. 2019). In our model, we consider
some of the ideas suggested in this literature such as
using sliding windows (Levine et al. 2017) and give
larger weights to more recent cases (Russac et al. 2019)
but we adapt them to our policy that embeds a deep
neural net.

Regarding the use of individual-level context data
to provide personalized recommendations, with the
exception a recent paper by Han et al. (2021), most of
the literature on combinatorial bandits consider addi-
tive models. In these models, every time that an arm 7
is played, the algorithm receives information to learn
about every combination that includes 7, leading to
important gains in the learning rates. However, a key
feature of the House Ad problem is that the profit
function is not additive. As is well known in the

marketing literature, there are important interactions
between ads that makes the click-through of a given
banner dependent on the other ads shown. Although
recent advances in combinatorial bandits using addi-
tive rewards could provide significant efficiency
gains, they are not directly applicable to our case.

Considering the importance of banner interaction, our
research is more closely related to the literature on
dynamic assortment planning. This stream of research
explicitly recognizes that the impact of adding an item to
the recommendation critically depends on the other
items in the set. For instance, Sauré and Zeevi (2013),
study a stylized assortment problem and show that a
simple explore-first-and-exploit-later policy can lead to a
asymptotic regret bound of O(KlogT). Closer to our
work, Agrawal et al. (2019) propose an upper confidence
bound type of algorithm that suggests assortments with
better expected rewards but penalizes alternatives that
have been more actively explored. For this policy, the
authors show a worst-case regret of O(4/KTlogKT).
With respect to this literature, our work offers two impor-
tant differences. First, unlike our work this literature relies
on restrictive multinomial logit substitution patterns. Sec-
ond, although this stream focuses on deriving theoretical
properties and only provide numerical results with simu-
lated data, our research focuses on describing the per-
formance in a real setting with actual recommendations.

Recent literature on MAB has been active in studying
practical applications in relevant business settings. For
example, Bergemann and Valimaki (2002) use a bandit
approach to decide optimal prices under uncertainty
where players take into consideration the costs and
benefits of learning. Bergemann and Hege (2005) devel-
oped a similar model to describe risky investments in
innovations where investors and innovators cannot
commit to future actions. Kleinberg and Leighton
(2003) use bandits to model online auctions and discuss
the impact of demand for information in the outcomes
of the auctions. Other applications include dynamic
assortment decision in the fast fashion industry (Caro
and Gallien 2007) and network routing with uncertain
delays (Awerbuch and Kleinberg 2004).

The application of MAB to support marketing deci-
sions is scarcer. In an early work, Bertsimas and Merser-
eau (2007) developed a general framework to conduct
adaptive experimentation in interactive marketing con-
texts, where decision makers can dynamically decide
what is the most adequate message to deliver to their
customers. Although they propose heuristics that can
be implemented in real-sized problems, they only pro-
vide simulated results. The most common applica-
tion of bandits in marketing contexts is the generation
of dynamic recommendations for online display. For
example, Li et al. (2010) use this framework to de-
cide which article should be highlighted in a digital
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newspaper, and Tang et al. (2015) illustrate the applica-
tion of MAB to personalize sponsored search advertis-
ing based on the keywords used. Except for a few
exceptions, these applications are model free and use
observed performance to learn from the reward struc-
ture of all available arms. Among those exceptions, we
have Pandey et al. (2007) who aim to match online ads
to websites. To reduce the complexity of the problem
and to help gain more domain-specific insights, they
use predefined taxonomies for ads and the web pages
where ads could be shown. A more recent exception is
the work by Schwartz et al. (2017) who propose a hier-
archical model to capture how ad attributes can have
an heterogeneous impact depending on the website
characteristics. This study is similar to ours in that both
test the performance of the proposed solution using
controlled experiments. However, they decide which
ad should be displayed in different websites, whereas
we decide the collection of items to be displayed to
each individual visitor in a single location.

Broadly speaking, the decision problem we are
addressing in this research is related to the literature
on display advertising which has been extensively
studied in the past few years. Starting from Man-
chanda et al. (2006), who were one of the first in
empirically demonstrating that exposure to online
advertising leads to larger sales, several other investi-
gations have discussed the effectiveness of different
aspects of online advertising. For example, Bleier and
Eisenbeiss (2015) analyze the interaction between
retailers” trust and personalization depth in online
advertising, and Kireyev et al. (2016) investigate the
dynamic interaction between paid search and display
ads. Regarding the conditions that favor more effec-
tive displays, Braun and Moe (2013) study how the
different creatives of a single marketing campaign can
have different impact on customer responses, whereas
Breuer and Brettel (2012) analyze long-term impacts
of banner advertising and other digital marketing
tools.

Our investigation focuses on house ads, which are a
very specific type of online display. House ads are
also called self-promotion ads or internal links and
correspond to any promotional information presented
on the retailer’s website that is devoted to signal some
specific products or categories of products. Unlike tra-
ditional online displays that are mostly devoted to
increase traffic to the website, house ads are displayed
to communicate specific elements of the value pro-
position to move customer forward in the purchase
funnel. In terms of their execution, internal links
also have important differences with traditional dis-
play advertising. For example, firms can decide the
whole set of information surrounding internal ads.
This gives more control to the retailer, but at the same
time increases the complexity of the display decisions.

Additionally, as the ads are displayed internally, there
is no direct cost of advertising. Despite being consid-
erably less studied than traditional displays, there are
some investigations looking at their effects on con-
sumer behavior. For example, using a Bayesian mix-
ture approach, Rutz and Bucklin (2012) show that
internal banners influence subsequent choices of page
views during the current browsing session. More
recently, using multivariate time series analysis, Goic
et al. (2018) show that house ads have a direct impact
in online sales, but a limited cross-channel effects. All
these studies characterize the effect of internal ads on
sales and are descriptive in nature. In our investiga-
tion we developed and tested the effectiveness of a
prescriptive method to decide how these internal ads
should be jointly displayed.

3. Problem Setup and Modeling
Approach

Different online retailers have different structures to
organize product information in their homepages.
Common features include menus to explore product
categories and search bars to look for specific informa-
tion. The vast majority of homepages of online
retailers include what we have named as house ads.
This is a list of predefined slots where the firm can
highlight some specific product information. Cer-
tainly, the content of the whole website can be
decided using the methodology we propose here.
However, most retailers only devote a certain area of
the homepage to dynamically display house ads. The
rest of the site is typically used for navigation tools or
corporate-level information such as store openings,
the introduction of new brands, or multichannel pro-
motions. For the purpose of this research, we consider
that the retailer has a fixed number of slots to allocate
personalized information about specific products, and
the content of rest of the website is decided elsewhere.
An illustration of this structure is shown in Figure 1.
In this figure, we show a schematic representation of
the homepage where, in addition of search and navi-
gation tools, there is a well-defined area to exhibit
house ads. To do so, the firm can decide among a
potentially large number of combination of ads. In
this illustration we show three alternative sets of three
ads (sy, sp, and s3) that the retailer can decide to exhibit
in the predefined area.

The selection of the combination of house ads to
display for a visitor is frequently addressed by man-
ual configuration of displays and constant monitoring
of ads’ performance over time by marketing teams
and content managers. However, this problem can be
formulated as a dynamic optimization problem. For-
mally speaking, consider a sequence of customers
indexed by i (i€{1,...,I}) and a set of available ads
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Figure 1. (Color online) Homepage with a Predefined Area for the Display of House Ads
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indexed by a (a€{1,...,A}). The decision problem
corresponds to the selection of a sequence of subsets
to be shown to each visitor to maximize the expected
reward associated to that sequence. However, not all
combination of ads are admissible. For example, the
subset must have a given length to accommodate the
available space and it cannot have repeated items.
Moreover, the set of feasible displays (or arms) can
be further restricted to incorporate business rules
designed to preserve long-term goals. For instance,
the retailer might want to exhibit ads from different
categories to provide more variety or can forbid the
exhibition of two images next to each other because
their aesthetic characteristics make them incompati-
ble. In our model, we consider that any set of feasible
ads (sx) belongs to a set S that discards any undesir-
able combination of items. Although our prescriptive
method can be extended for temporal variations in S
associated to the addition of new ads or the deletion
of others that have worn off, in our empirical evalua-
tions we only consider scenarios where the set of
feasible combinations is constant in the evaluation
horizon. Thus, if wy is a decision variable taking the
value of one if subset s, is displayed to visitor i, then
the underlying decision problem associated to the
display of house ads can be expressed using the opti-
mization problem displayed in Equation (1). For a

similar formulation in a MAB context, see Schwartz et al.
(2017, p. 504).

maxT = Ey
w
i=1 k=1

subject to > jwy =1 Vie {1,...I}
k

I K
Zzwlk -yiktl
@

In this formulation, y;, is the reward associated with
displaying subset k to visitor i. As we will explain
later, we have explicitly included a time index t to
denote that rewards are nonstationary and that we
learn from their values in batches (fe{1,...,T}). As
the rewards are unknown, we take the expectation
over their values. It is worth noting that w; must be
decided sequentially and that the uncertainty on v
depends on previous decisions. If a set k is more inten-
sively shown, the uncertainty for that set would
reduce. Thus, each period is different from the pre-
vious ones because there are different levels of knowl-
edge about the rewards associated to each arm. This
dependency introduces the key dynamic tradeoff of
the problem where we aim to balance exploration
(getting to know the performance of each super arm)
and exploitation (displaying the best super arms).
This problem could be solved using a dynamic pro-
gramming approach (Bertsimas and Mersereau 2007),
but it is very computationally demanding, especially
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in our case where the combinatorial nature of the ads
to be displayed implies a potentially large number of
alternatives (Powell 2007). Instead, in this research,
we framed the problem as a multiarmed bandit that
has been shown to provide workable solutions with
good optimality conditions (Agrawal and Goyal 2012,
Russo and Van Roy 2014).

In our multiarmed bandit formulation, each house
ad corresponds to an arm. As we have argued, house
ads should not be decided in isolation but as a combi-
nation of several ads. The combinatorial nature of the
problem is referred in the literature as a combinatorial
multiarmed bandit, where each feasible combination
of arms of size N is defined as a super arm, s, € S
(Chen et al. 2013). This is a key feature of house ads
decision, because the design of the whole website is
under the control of the retailers, and therefore, they
can decide combinations of ads that provide more
variety (Kahn and Wansink 2004) or a better context
to decide (Simonson and Tversky 1992). In our model,
we allow that each banner combination have its own
reward, which has the advantage of imposing no
restriction on the substitution patters. Although learn-
ing about complete sets of banners works well in our
application, it might not scale well for other settings
with larger decision spaces.

In general, 1% can represent any perceived reward
that the firm might be interested in lifting up; for exam-
ple, the monetary value of the associated purchases, the
length of the visitation session, or the probability the
visitors return to the website. In our empirical applica-
tions, we will use click-through rates (CTRs), and later
on, we also study the impact on add-to-cart (ATC)
rates'; therefore, we define yy; € {0,1} V (i,k, t).

In addition to the combinatorial display of ads, the
business context imposes a number of considerations
that must be taken into account when selecting an
adequate algorithm to solve the MAB problem. First,
unlike most of the literature in MABs, we assume the
rewards associated to the display of house ads are
nonstationary. Our relaxation of this assumption is
motivated because the context in which house ads are
displayed changes over time. In fact, most online
retailers include in their website seasonal information
about brands or corporate promotions that can affect
the relative attractiveness of any given ad. For exam-
ple, if the retail chain is having special offer in the car-
pet category, any ad on that product category might
be less attractive. Second, our method is designed to
provide real-time recommendations to every cus-
tomer visiting the website. However, in the practical
implementation, the training of the model should be
performed in batches, and the rewards are updated
on a daily basis. This is why we include a time index ¢
to denote that parameters can be updated periodically
(Besbes et al. 2014, Schwartz et al. 2017). Third, for

a large fraction of visitors, we have individual-level
information that allow us for personalized recommen-
dations. For example, we can observe the device they
are using to visit (Goldstein and Hajaj 2022), the elec-
tronic channel they used to arrive to the website (Goic¢
et al. 2022), or a history of previous website visitation
(Park and Park 2016). Considering the sparsity of this
individual-level information, we adopt a flexible
approach using neural networks. The use of neural
networks in the context of MABs is a distinctive fea-
ture of our proposed solution. Although in our empir-
ical applications we use three layers in the network,
the methodology is flexible enough to accommodate
more layers to take further advantage of the recent
developments in deep learning (Schmidhuber 2015).

Despite the significant progress in the identification
of Internet visitors, for most electronic retailers, this is
still a first-order concern, and they can only determine
the identity of a fraction of them at the time of their
arrival (Goic et al. 2021). To deal with this challenge, we
implemented separated bandit policies depending on
whether the customer can be identified at the time of
arrival. The details of the algorithm to display personal-
ized house ads for customers with individual-level
information is discussed in Section 3.1. Considering the
use of observed heterogeneity, we have labeled this
algorithm as a contextual bandit. The algorithm to dis-
play ads for visitors with no identifiable link to pur-
chase history is discussed in Section 3.2 that we have
labeled as a noncontextual bandit.

3.1. Contextual Bandit

For cases in which we have information of the visitor
at the time of the recommendation, we can approach
the MAB problem as a contextual bandit (Li et al.
2010, Agrawal and Goyal 2013). In this context, we
aim to design a policy that provides to each individual
state (e.g., past purchase histories) a distribution of
playing each super arm. The outcome of this policy is
a personalized recommendation depending on the
individual level data. Formally speaking, we look for
a function that takes a state vector x and returns a rec-
ommendation of the set of ads to be displayed for that
value of x. In the state vector x, we can include any
information that might help determine which super
arm is more likely to produce a positive outcome,
such as demographics, past purchases, time, and
device at the moment of navigation. A popular algo-
rithm to solve this dynamic optimization problem
under uncertainty is Thompson sampling (Thompson
1933). This principle states that it is optimal to select
actions according to their probability of maximizing
the expected reward at each decision stage. To use
Thompson sampling, we will sample from the poste-
rior distribution of each super arm and select the one
with the highest probability of being the best action.
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We use this principle and adapt it to the problem of
house ad displays with individual level context.

To construct a flexible and accurate estimation of the
probability that each combination of house ads pro-
vides the highest reward, we use a regularized feed-
forward neural network to sample from the posterior
distribution of each super arm. Our selection of this
method is justified not only because it provides a great
deal of flexibility (Chen et al. 2005), but also because it
has shown to perform well with an sparse set of indi-
vidual level covariates x (Shepperd and Cartwright
2001). This is precisely the case we observe in purchase
histories for website visitors. In fact, a typical customer
only present a few purchases in a small number of
product categories and no sales in many others. We
consider a network with L layers, and we denote by ¢
the vector of weights in the layer /€ {1,...,L}. Thus,
the output y(x, 0) of the network depends on both the
set of individual-level information x and the matrix of
weights 0. The use of neural networks in the context of
MARB is relatively scarce in the literature, and therefore
we consider necesary to provide further details about
a number of elements associated to the structure of the
net and the learning mechanism we used to calibrate
the underlying weights. In particular, we consider
important to discuss the following three components:

1. From supervised to reinforcement learning: Neu-
ral networks are most commonly used in supervised
learning, where a list of positive and negative labels are
used to calibrate the internal weights of the network. In
our problem, for each case we observe a positive or
negative label only for the displayed ad, but there is no
signal about the other ads. If we directly use a super-
vised learning paradigm to calibrate the net, the algo-
rithm will myopically recommend only those ads that
have relatively good performance, but it will underex-
plore those ads with no or little information.

Formally speaking, in supervised learning given a
training example x and a target vector y(x, #), when
training by backpropagation we match the estimation
provided by each neuron in the output layer (1) to y
by using a multiclass cross-entropy cost function
(Burges et al. 2007). In this paradigm, the entire output
layer is trained using each positive or negative label. In
contrast, in reinforcement learning, even if the reward
is positive this does not imply that the other actions
were incorrect. As we only observe errors with respect
to the displayed action k, in the training procedure, we
use a sigmoid cost function as follows:

J(01x,y) == > wilyk - 1og1i(6x)) + (1 — i)
ik
-log(1 - ¥k(6x))]. 2)

This function only affects the neurons associated to
the displayed ads. The intuition behind this idea is

that we cannot penalize for combinations that were
not shown in a particular display. In supervised
learning, we know whether the answer was correct
or not, and therefore we use that information to train
the entire output layer. In reinforcement learning, we
do not know if showing another combination differ-
ent than the one that was displayed could have pro-
vided a reward or not, so we only train one output
neuron at a time and then back-propagate that error.

2. Dropout to represent model uncertainty: Neural
networks in their most standard version produce deter-
ministic outputs. Nevertheless, a key component of
bandit policies is to randomize the optimal decision to
balance the exploitation of the best solutions with the
exploration of solutions with higher uncertainty. To
implement this randomization, we use a Thompson
sampling approach where we sample from the poste-
rior distribution indicating the probability that each
super arm is the the best action.

To do this, we turn to a regularization technique for
neural networks named dropout. Dropout works by
giving a zero weight to components of the input and
hidden layers, with probability p, a hyper-parameter to
be calibrated. We use dropout in training, which is a
common practice in neural network model to prevent
overfitting (Srivastava et al. 2014), but we also use it in
the forecasting instance by randomly shutting off neu-
rons in the network allowing us to represent model
uncertainty and generating a distribution over the out-
puts. Then, we use Thompson sampling by selecting
the highest estimated super arm according to the poste-
rior distribution induced by dropout.

Certainly, there are other sampling schemes that
can be implemented based on the output of the neural
network. For instance, we could use an e — greedy
approach where we display the best superarm most of
the time, but we randomly play suboptimal alterna-
tives for an e fraction of the cases. Our choice of using
dropout to implement a Thompson sampling scheme is
justified because previous literature suggest that, in the
context of neural networks, dropouts can be used to
characterize the posterior distribution of the forecast.
This notion was first introduced by Gal and Ghahra-
mani (2016), and it is further discussed in Online
Appendix 1. In Online Appendix 2, we provide a simu-
lation study to show how our proposal compares to
alternative sampling schemes.

3. Stochastic gradient descent for sequential learn-
ing: We have argued that in our business context
where we decide about house ads, it is important to
explicitly consider the nonstationary nature of the out-
comes. To accommodate this, we introduce an adapta-
tion of the stochastic gradient descent (SGD) algorithm.
In its most common form, SGD randomly select exam-
ples from the training set to approximate the updated
direction of the network weights (Bottou 2010). In our
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implementation, instead of randomly selecting exam-
ples from the training set, we consider the time where
they occurred and therefore more recent case have
larger incidence in calibrating the neural net. In this
regard, we use stochastic gradient descent with
momentum (Rumelhart et al. 1986), a variation of SGD
that uses a moving average of the past m gradients
where we give more importance to more recent gra-
dients. Formally speaking, if v is the direction in which
we update 0, then we update v according Equation (3):

1 m ) ,
veaw—ar Vo> J(0] £, y), ©)

i=1

where a; € [0,1) and a, > 0 control for the exponential
decay and learning rates respectively. This way, the
latest changes in the environment can provide the
direction in the learning process before we produce a
recommendation. This is similar to the idea proposed
in Sutton and Barto (2018) and Russac et al. (2019),
who modeled the MAB problem with nonstationary
reward distributions by giving more weight to recent
observations.

Taking all these components into consideration, the
resulting algorithm we used to make recommenda-
tions for visitors with individual level information is
presented in Algorithm 1. Here we assume that the
set of feasible superarms S is already defined and the
algorithm is trained on a data set D, where each con-
text x@ is paired with the corresponding vector y(i)
that contains the reward of each of the K feasible com-
binations. As we combine Thompson sampling with
deep neural networks, we also refer to this algorithm
as deep-Thompson.

Algorithm 1 (Deep-Thompson Sampling)
Set a1, a7,p €10,1], the number of hidden layers L
and neurons per layer N'
Initialize weights @ of the network h(:)
for each (x,y?) € D do
hO = x
forlinl,...,L do
forninl,...,N' do

| gin — { 0" w.p. (1-p)
end 0 wpp
WO =f(0'n)

end for

7 = MNL(h)

Compute the loss function J(0)

Apply the back-propagation algorithm with gra-
dient descent with momentum using (a1, a2)
and J(0)

end for

To predict the superarm to display given a state
vector ¥, pass it through the trained network h(-)

with dropout and select the superarm k with the
highest estimated probability of success, ;.

In the algorithm, f(-) denotes the activation function
used to determine whether a given signal is tres-
passed to the next layer. As is usual practice in neural
networks, in our application we use rectified linear
unit (ReLU) activation functions. To initialize the
weights of the network we used He initialization (He
et al. 2015). The idea behind this procedure is to make
the variance of the output of a layer equal to the var-
iance of its inputs to help convergence of models with
multiple layers. To speed convergence up, we cali-
brated the mean values of the output layer to repro-
duce historical CTR at the aggregated level and then
use ReLU for all other weights in the net.

The implemented network had three layers, and in
the last layer, we include a multinomial logit model
(MNL) to define the estimated reward §. Once the
model is estimated, for each new case characterized
by a vector x™ we apply random dropout and execute
a single stochastic forward pass through the network,
selecting the alternative with the highest probability of
success.

In our empirical application, the dropout parameter
was set at p = 0.1 so there is a 10% chance of any neu-
ron to turn off in the input or hidden layers. Finally,
the SGD with momentum parameters was set at
(1,2) =(0.1,0.01). These are conservative choices
frequently used in other applications. The network is
trained by performing back-propagation one training
example at a time from the set of all observed cases
(x(i),y(i)) in the historical data set D. Last, considering
the stochastic gradient of Equation (3), the data are
fed in a time-ordered manner to take advantage of the
properties of SGD with momentum.

3.2. Noncontextual Bandit

In our main model, we make personalized recommen-
dations depending on customers characteristics.
However, not all visitors can be identified at the time
of their arrival, and the practical implementation
requires to also provide recommendation for them.
From a methodological perspective, we are mostly
interested in analyzing the performance of the full
model of Section 3.1. However, this noncontextual sce-
nario allow us to understand how our bandit policies
compares against simple recommendations made to
nonidentified users that are likely to visit less fre-
quently and being less familiarized with the home
page of the retailer.

For simplicity, we produce noncontextual recom-
mendations based on a batched e-greedy approach
that we adapted to accommodate nonstationary rewards.
The e-greedy algorithm selects the action with the
highest estimate for the mean reward an € proportion
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of time while selecting the rest of actions at random.
Thus, this algorithm plays greedily an (1-€)% of the
time and learns on the performance of other super
arms in the remaining fraction. In this setting, it is
desirable to start actively exploring the solution space
and progressively reduce this exploration as we col-
lect more information. To do so, we use an exponen-
tial decay for €, (; = (|S|- tlog (t))_b).

The decay parameter 6 controls for the rate at which
we diminish the exploration probability. A value of 0
closer to one makes these probabilities approach zero
at a faster rate. This €; scheme provides an upper
bound on the expected regret (difference in expec-
tation with respect to an oracle that always plays
the best action) at each time step (Slivkins 2019). To
accommodate nonstationary rewards, we estimate the
expected reward of a super arm using an exponential
recency-weighted average, as in Sutton and Barto
(2018). Despite of its simplicity, e-greedy algorithms
are shown to perform well in practice (Schwartz et al.
2017, Riquelme et al. 2018). The resulting version of
our nonstationary e€,-greedy algorithm is formally
described in Algorithm 2.

Algorithm 2 (Batched Nonstationary e,-Greedy)
Seta,6€[0,1], 1 =0and 7,, =0 Vk
fortel,...,Tdo

e = (IS] - tlog (£)) ™

foriel,..., |I}| do

Sample ¢ ~ U[0,1]

if ¢ > ¢; then

Choose a super arm k randomly from S

and observe reward vy

else

| Choose argmax; .1/, and observe

end if

end for

U = |11—t|2iyikt
Ve =Q—a) Gy +a -Gy
end for

In Algorithm 2, I; is the set of visitors that arrived
during day t. Also, ¥, is the success rate of super arm
k up to day t. In the calibration of ,,, @ controls for
the weight we give to present information, and (1 - a)
is the corresponding weight for historic rewards. A
value of & closer to one represents a strong belief that
the reward distributions change rapidly on this
environment.

3.3. Simulation Study

To evaluate the performance of our main bandit pol-
icy, we ran a simulation study where recommenda-
tions were made over synthetic data. The objective of
this study is to demonstrate that our model has the
potential of outperforming other policies and evaluate

how different components of our proposal contributes
to increase click-trough rates. This simulation follows
the idea in van Emden and Kaptein (2018) for evaluat-
ing contextual multiarmed bandit algorithms. Here,
we consider a binary reward yj,) € {0,1} for display-
ing an ad a, within a combination of ads s to visitor i.
We model the reward structure according to a stand-
ard multinomial logit model:

Pr (ylu(k) = 1 | xi/ ak/ﬁk/ )/k/ /\u)
_ exp (ak + x;ﬁk + Vi Mkt + Zbesk Aub) (4)
1+ Zﬂ’ESk exp (ak + x;ﬁk + Vi Dkt + Zbesk /\a'b) '

The vector x; correspond to individual level informa-
tion defining the context, and f captures the relation-
ship between that context with the reward structure.
The parameter ay is a fixed effect devoted to capture
that some banners are consistently more effective than
others. Next, 1y, is the number of times the arm k has
been displayed and it varies dynamically according to
the recommendations of each algorithm. Consequently,
the parameter y, is meant to capture nonstationary
rewards. Finally, the set of parameters A,, captures the
interaction of simultaneously displaying ads a and b,
such that if A, <0, banner a decreases the probability
of being clicked when jointly displayed with banner b.
To build the simulated scenario, we assumed that
x; ~N(0,1). The rest of the parameters are also gener-
ated from normal distributions with «; chosen to have
similar CTR to what we observe in a realistic setting.
We tried other distributions, and the simulation results
remain qualitatively unaltered.

These simulations can be used to compare our model
against any arbitrary recommendation policy. How-
ever, for simplicity, we will focus on evaluating the
most relevant features of our bandit algorithm. More
specifically, we use the simulated data to produce rec-
ommendations with the following algorithms:

e Deep-Thompson: This is the full model we pro-
pose to use in the live experiment, and it considers all
the key components we have described as critical for
deciding displays of house ads. This includes nonsta-
tionary rewards and contextual recommendations
using an embedded deep network.

e Top-k: This model is identical to the full model,
but we estimate the reward of each banner separately
with no interactions (A, = 0). Here, the actual recom-
mendation corresponds to the three banners with the
highest reward. By ignoring the potential interactions
between banners, this allow us to assess the impact of
not considering the combinatorial nature of the decision.

o Stationary Rewards: This model is identical to the
full model, but before feeding the model, we shuffle
the order of the cases in the training batch, and instead
of giving more importance to more recent cases, all
considered cases weight the same. Thus, this model
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allow us to assess the impact of ignoring that rewards
might be nonstationary.

e No Context: This model is identical to the full
model, but instead of calibrating a neural network that
uses the context as input, we completely ignore the
contexts and estimate homogeneous reward for each
banner combination. In the absence of context, we
update the reward of each alternative using a standard
Beta-Bernoulli distribution (Chapelle and Li 2011).

e Thompson MNL: This model is identical to the full
model, but instead of using a deep network to describe
the relationship between context and recommendations,
we link purchase histories using a simple multinomial
logit. This formulation has been used in previous
applications (Agrawal et al. 2020, Oh and Iyengar
2021). In particular, this is the same formulation pro-
posed by Schwartz et al. (2017), but without the hier-
archical structure as we only consider one website. In
this synthetic evaluation, the data are generated using
exactly the same functional form we assume in this
policy, and therefore, it is expected that this algo-
rithm can lead to unrealistically good performance
that would not replicate in live settings. In the
experiment with real data, this model will provide a
benchmark to evaluate the gains of using a complex
nonlinear transformations to connect context to
recommendations.

e Oracle: This policy can anticipate the reward of
each superarm with no uncertainty, and therefore, the
oracle knows the probability of each action and thus
can always choose the superarm with the highest prob-
ability. Although this policy is not implementable with
actual decisions, it is useful to generate an upper bound
of what can be achieved using a bandit policy.

e Random: In this model, we simple recommend a
random combination of ads. This model is simply used
to provide a lower bound to the click-through rates
and enable us to have an assessment of in which degree
the model can lift camulative rewards.

By varying the matrix of contexts and the corre-
sponding weights, we generated 100 scenarios that we
used to evaluate the performance of all algorithms. A
summary of these results is presented in Table 1,
where we display mean and standard deviations of
the cumulative rewards in these 100 scenarios.

These numbers provide preliminary evidence that the
proposed deep-Thompson model performs well, and it
leads to higher click-through than most of the bench-
marks we analyzed. As we anticipated, the Thompson-
MNL is the only (feasible) model that exhibits better
perfomance. This is because the synthetic data are gener-
ated using exactly the same functional form of this
model. In practice, however, this functional form is
unknown, and we expect that allowing for more flexible
relations should lead to better recommendations. Over-
all, these simulations demonstrate that the proposed

Table 1. Mean and Standard Deviation of Click-Through
Rates of Different Bandit Policies on Simulated Data

Bandit policy Mean Standard deviation
Oracle 0.337 0.129
Deep Thompson 0.260 0.114
Thompson MNL 0.310 0.129
Stationary rewards 0.239 0.103
No context 0.216 0.096
Top-k 0.140 0.068
Random 0.078 0.035

algorithm has the potential of generating more profit-
able recommendations. However, we do not know in
which extent banner interactions, stationary rewards,
and the complexity of the relationship between con-
text and recommendations materialize in an online
setting. This is formally evaluated in Section 5.1,
where we use the experimental data to conduct off-
policy evaluations. In particular, we will show that
with real decisions our model outperforms all other
benchmarks, including the Thompson-MNL.

4. Experimental Evaluation

In this project, we partnered with a regional retailer
who competes in the department store market. The
retail chain operates a few dozens brick and mortar
stores in four countries and has a fully transactional
website that accounts for around 10% of its total sales.
To evaluate the impact using of multiarmed bandit
algorithms to dynamically select the house ads that
are displayed, we ran two experiments where our
automatic recommendation engine was Compared
against an alternative benchmark. In the first experi-
ment, a set of six banners was made available from
which three must be displayed for every visitor. We
compared the performance of our recommendation
algorithms in contextual and noncontextual settings
against a fixed display chosen by an experienced mar-
keting team from the retailer. In the second experiment,
the decision was made from a set of eight available ban-
ners, and we used a more challenging benchmark. In
this case, the marketing team can adjust the display con-
figuration at any time by looking at the intermediate
results of the bandit algorithm.

To calibrate the model, the retailer gave us access to
historical purchases in the online channel in the last
two years. For confidentially reasons, we cannot dis-
close the exact number of customers purchasing in dif-
ferent categories, but in the data set, we observe more
than half a million unique customers that made more
than 2 million purchases from more than 200,000 differ-
ent SKUs. Frequency of purchases are relatively small,
and about 40% made more than two purchases in these
two years (about 16% made more than five purchases).
Thus, as is common in online retailing, the associated
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customer-product incidence matrix is extremely sparse
with a density of 0.0016% nonzero cells.

To alleviate the sparsity of the data, the aforemen-
tioned list of products is classified in 26 large product
categories. Figure 2 shows the purchased items distri-
bution by these product Ca’cegories2 and illustrate that
even after aggregating to a category level, there is a
large variation between categories and several of
them exhibit very small purchase incidences. This is
another reason why we use a flexible mapping to con-
nect individual level covariates and display decisions.

Next, we explain how we implemented the experi-
ments and discuss some key results to show how our
proposed methodology largely outperforms the cur-
rent practices of the firm.

4.1. Experiment 1

In the first experiment, for each visitor, we must select
three house ads to display from a set of six possible
ads. As we decide about combinations of ads, our
decision space consist of a total of 20 feasible super-
arms, from a total of 120 possible combinations. In
this set, we discarded combinations with repeated
ads, and we make no distinction between the order of
the ads by excluding permutations of the same collec-
tions of ads. The ads consist of women’s fashion,
makeup, personal beauty accessories, home applian-
ces, toys, and linens. It is worth noting that the ads
with beauty accessories and the ones with home
appliances both explicit advertised discounts. As we
explicitly consider two cases (with and without con-
text), this first experiment consisted of four experi-
mental conditions as illustrated in Figure 3. In simple

Figure 2. Distribution of Purchased Items by Product Category

Distribution of purchased items by category
600000

400000

A23 ATl A0S  AD7 AD9 A1D A12 A13  AD5  AD4  A20

Number of purchased items

At6

A1

words, we start by classifying visitors depending on
the availability of purchase histories. Customers with
previous purchases are candidates to be recom-
mended with our contextual bandit policy. Here, we
randomly selected half of identifiable visitors to be
treated with our recommendations, and the other half
is assigned to the control group. Similarly, customers
without purchase history are randomized to be rec-
ommended to our noncontextual policy or a control.
In this design, we decide the bandit policy based on
whether we can identify the user and not in the length
of the purchase history. Thus, if the users are identi-
fied, they receive a recommendation from the contex-
tual bandit regardless of how many times they have
visited or purchased in the past.

Regardless of the use of context, in our experimen-
tal design, we use the business as usual practice as the
experimental controls. This is letting a group of expe-
rienced marketing managers select the combination of
ads they believe can have the best performance. Our
experiment was carried out in a three-week period,
from September 11 to October 3, 2018, and the combi-
nation of house ads recommended by the group of
experts does not change over time (in the next experi-
ment, we relax this restriction). In this period, more
than 50,000 visitors participated in the analysis. In this
experiment, 33.4% of customers were identified at the
time of arrival having previous purchase histories,
whereas the remaining 66.6% had no data associated
with them. As a result, more than 9,000 visitors were
assigned to one of the two conditions of the contextual
experiment, and more than 19,000 were assigned to
each condition in the noncontextual one.
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Figure 3. Experimental Assignment
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In Figure 4, (a) and (b), we show a graphic represen-
tation of the solution profiles of both bandit solutions.
As expected, the noncontextual solution starts with a
fairly homogeneous distribution of exhibitions among
available combinations, but after a few days, the algo-
rithm starts exploiting superarm 11. However, even
after this initial exploitation, the algorithm leaves
room for exploration. In fact, after a week, the algo-
rithm also starts exploiting superarm 20. The solution
profile of the contextual bandit is similar in that it
does not exploit any solution in the first few days, but
it departs from noncontextual bandits in several ways.
To start with, even in early phases of exploitation, the
algorithm does not concentrate their solutions in a sin-
gle superarm, but instead heavily plays three of them.
This is a direct consequence of personalization, and it
implies the identification of three latent segments of
customers. In later stages of the process, the algorithm
has more information to connect customer profiles
with a given combination of ads, and therefore, the
resulting solution is much more diverse depending on

-~
- 4

Contextual Bandit
Recommendation

Control ]

Non-Contextual Bandit
Recommendation

Control ]

customer characteristics. In fact, at the end of the eval-
uation period, there are a few superarms that concen-
trate most of the displays, but all arms were played
with some probability. To see formal evaluations of
Gini indices reporting the variability in each each ban-
dit policy for the distribution of the exhibition of dif-
ferent ads, see Section 3 in the online appendix.

A critical question of the experimental evaluation is
whether these recommendations do generate larger
rewards. Recall that for this experiment, our goal is to
maximize the accumulated click-though rates. Table 2
precisely reports aggregated lift for CTR for both poli-
cies. These results indicate that both bandit models
achieved superior rewards, and the difference is highly
statistically significant for the corresponding difference
in the proportions test. Moreover, the improvement in
both cases is larger than 15%, which is managerially
relevant.

To better understand the dynamics behind the
aggregated lift in CTR, Figure 5, (a) and (b), displays
the cumulative CTR for both bandit policies against

Figure 4. (Color online) Accumulated Displays of Each Combination for Bandit Recommendations

(a)

Combination #20

hY

Combination #11

Day

(b)

Notes. (a) Solution for the noncontextual case. (b) Solution for the contextual bandit.
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Table 2. Summary Results of Experiment 1 in
Noncontextual and Contextual Settings Against a Fixed
Human Decision

Contextual Noncontextual
Lift p value Lift p value
CTR 15.9% 0.03 15.4% < 0.01

their corresponding controls. The actual CTRs have
been masked from the plot for confidentiality, but
they all range between 1% and 10%. Interestingly, the
trajectory of both policies is quite different, which can
be explained not only by the algorithm itself, but also
because they provide recommendations for different
customer groups. For example, the solution provided
by experts outperformed the noncontextual bandit for
the first couple of days. This indicates that the market-
ing team has enough business knowledge to identify a
solution that leads to better than average click-
through. On the other hand, the cumulative CTR of
the contextual bandit is above the expert curve over
the whole evaluation period. We believe this is a good
signal that the customer data are informative to per-
sonalize the recommendations and that the several
thousands of ads we display every day provides
enough information for the MAB algorithms to learn
fast.

When comparing the curves, we also observe that
for the case of noncontextual bandit, the cumulative
CTR appears to be increasing over time reflecting that
the algorithm properly learns and exploits. However,
this is not the case for the contextual bandit. We

hypothesize that this is mostly caused by a wear-out
effect, in which customers find the ads less attractive
over time. The reason why wear-outs are mostly
present in the second case is because this group
includes more recurrent customers that are exposed to
the ads multiple times. We further explore this issue
in Section 5.2.

4.2. Experiment 2

The basic setting for this second experiment remains,
but there are a number of differences that make the
problem more challenging. First, we have more house
ads available. In this second experiment, we had a set
of 56 feasible superarms (resulting from eight individ-
ual house ads) that is almost three times larger than in
the first experiment. Furthermore, the experiment
only ran for 13 days, which is about half of the time
we used previously. In consequence, we have less
time to learn about the effectiveness of a larger set of
ad combinations. Second, the marketing team was
allowed to change their original combination at any
time to simulate their usual form of operation. It is
worth noting that the marketing team can observe not
only the performance of their policy, but also the per-
formance of our MAB strategy, and therefore they
can exploit the exploration capabilities of our method.
The decision of making the intermediate results of
MAB available to the marketing teams is based on the
configuration of the analytic platform used by our
partner firm that simultaneously displays key per-
formance indexes of all live conditions. Third, the
location where house ads are displayed in the website

Figure 5. (Color online) Accumulated CTR of e-Greedy Algorithm (Left) and Deep-Thompson Sampler (Right) with Respect to

the Fixed Display During Experiment 1
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moved slightly upward, and therefore we had access to
a larger number of views per day. Finally, and taking
into consideration the results of the first experiment,
we only used 20% of the visitors as controls, resulting
in more than 35,000 visitors in the bandit treatment and
more than 8,000 in the control. The ad categories in this
second experiment were personal beauty, tableware,
linens, and video games—all four house ads with
explicit discounts of up to 60%, 60%, 70%, and 30%,
respectively—electric scooters, electric tools, cameras,
and watches, which offer no explicit discounts.

In terms of the methodology, we made two adjust-
ments. First, in this second experiment, we focused
exclusively in the main model. This is justified not only
because it contains the key features we consider rele-
vant for the recommendations of House Ads, but also
because the retailer we partnered with was primarily
interested in evaluating the impact of providing per-
sonalized recommendations. Second, in addition to
CTRs, we complement our evaluation with a stronger
conversion metric. For technical reasons, the visitor ses-
sions could only be tracked up to the checkout page,
and therefore, we do not observe if customers actually
complete the purchase or not. However, we do observe
if customers added a product to the shopping cart, and
we use this behavior to build add-to-cart (ATC) rates
that we also include in the evaluation. Formally speak-
ing, we built this metric as the fraction of customers
who ended up adding a product to the shopping cart
from those available in the landing page associated to
the corresponding house ad before his current naviga-
tion session expires. It is worth noting that, despite
tracking ATC, the bandit algorithm is still trained using
CTR as rewards.

Table 3 shows the key performance results of this
second experiment. As in the first experiment, the
MAB approach leads to much larger CTR achieving a
36.8% gain with respect to the team of experts. The
comparison with respect to ATC is more challenging
not only because the ATC rates are smaller, but also
because we take no further interventions in the rest of
the conversion funnel. Thus, any positive effect in
ATC can be interpreted as a better identification of
customer preferences. As is shown in the table, the
resulting difference is outstanding with an increment
of more than 99% in ATC rates. In Online Appendix 4,

Table 3. Summary Results of Experiment 2 Against Expert
Decision Making

Contextual
Lift p value
CTR 65.12% < 0.01
ATC 99.34% < 0.01

we provide additional analysis to support that ATC
rates’” improvement can be explained not only for a
better selection of ads, but also for a more personal-
ized recommendation.

To shed further light on the dynamics of these gains,
we report in Figure 6(a) the accumulated CTR and in
Figure 6(b) the ATC. As in the first experiment, the ban-
dit solution generates better CTR from the very early
stages. Interestingly, the same pattern spills over to
ATC. It is interesting to see that the solution by the
team of experts presented an important improvement
in the last four days. This is because they decided to
change their house ads configuration to only exhibit
the superarm with the largest CTR. This indicates that
even if the retailer does not want to fully automate,
they can benefit from having an efficient algorithm to
detect the most effective combination of house ads. The
positive short-term impact of this myopic change does
not necessarily imply an effective policy in the mid-
term. This is because it inhibits learning from new ads
and because it does not adapt to wear out effects.

In the next section, we discuss how the observed per-
formance compares with the recommendation of alter-
native policies, and we further explore the reason why
the proposed policy leads to better recommendations.

5. Postexperimental Evaluation

5.1. Off-Policy Evaluations

Our experimental results indicate that the recommen-
dations derived from our deep-Thompson policy lead to
large improvements in key business metrics with
respect to current practices of the firm. In addition, In
the simulation study of Section 3.3, we demonstrate
that our proposed policy was capable to capture con-
textual data and provide superior recommendations
with nonstationary rewards. However, thus far we
have only compared our solution to more sophisti-
cated benchmarks with synthetic data and not with
actual customer responses.

A direct way for making these comparisons is by
implementing the full list of alternative algorithms
and comparing their online performance. The main
limitation of using that approach in our setting is that
we are working with the home page of a single retailer
and therefore the evaluation of multiple algorithms
will necessary imply splitting the traffic for different
recommendation systems limiting our statistical power.
Fortunately, recent work on bandit learning has shown
that off-policy evaluation can provide inexpensive and
fast comparison of different algorithms, because they
can be applied with historical data that were collected
from a different recommendation policy (Agarwal et al.
2017). The basic intuition of this offline evaluations is
that we can identify proper events in the logged data
that can be used to build valid counterfactual scenarios.
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Figure 6. (Color online) Accumulated Performance of the Deep-Thompson Sampler Algorithm in Click-Through Rates (Left)
and Add-to-Cart Rates (Right) with Respect to the Dynamic Display During Experiment 2

(a)
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—— Control
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3x

Accumulated CTR

Days

Notes. (a) Click-through rates (CTR). (b) Add to cart rates (ATC).

To evaluate the performance of a policy P using
offline data, we use the method proposed by Li et al.
(2011). Here, we observe the historical sequence of
observed plays (xi, wi, i) and, if it happens that the
policy P makes the same decision wj suggested by
the logging policy, the event is retained and used to
compute the payoff. If the policy P recommends a dif-
ferent set of banners, the event is ignored and we pro-
ceed to the next event. The algorithm resembles a
rejection sampler (Gilks and Wild 1992), and it lever-
ages the large number of plays we observe to gener-
ate meaningful counterfactual scenarios. More recent
developments have proposed other methods to con-
duct off-policy evaluations that might be more com-
putationally efficient (Swaminathan and Joachims
2015, Thomas and Brunskill 2016, Agarwal et al.
2017), but this is not a critical concern in our case. We
use off-policy to compare our bandit policy against
the same series of benchmarks we used in the evalua-
tion with synthetic data in Section 3.3, except for the
oracle policy that cannot be computed without the
explicit definition of the data generating process.
Each of these benchmarks is devoted to evaluate the
different features of our proposal. For instance, the
Thompson MINL model is useful to evaluate if having
a complex deep neural provides a benefit with
respect to a simpler multinomial logit. Similarly, the
model with stationary rewards allow us to assess if
using stochastic gradient descent with momentum to
compute the learning direction is indeed preferable
to a model where we assume that CTRs are stable
over time.

(b)

Deep-Thompson

2

Accumulated ATC

In the counterfactual evaluation of each of these
benchmark policies, every period we sample 30,000
bandit events from the logged data and keep those for
which the recommendation played in the live experi-
ment coincides withe the policy recommendation. This
procedure might lead to different sample sizes between
different recommendation algorithms. Thus, to compare
different policies on samples of the same size, we ran-
domly select a subset of events of each policy. Moreover,
to make sure the evaluation does not depend on the
sample, we simulated each benchmark policy 300 times
and report the mean reward and the corresponding
standard deviations. Results of these off-policy evalua-
tions are summarized in Table 4.

Results of these off-policy evaluations across all sce-
narios indicate that the deep-Thompson algorithm we
propose is indeed the policy that leads to the highest
mean reward, providing strong support to the idea
that all key modelling components we include in the
model are indeed useful to generate better recommen-
dations. Although the performance of the Thompson-

Table 4. Mean and Standard Deviation of Off-Policy Simu-
lation of Different Bandit Policies

Bandit policy Mean Standard deviation
Deep Thompson 0.2078 0.0257
Thompson MNL 0.1903 0.0809
Stationary rewards 0.1021 0.0283
No context 0.0960 0.0040
Top-k 0.0620 0.0069
Random 0.0454 0.0018




Aramayo, Schiappacasse, and Goic: Multiarmed Bandits for Ads Recommendations

286

Marketing Science, 2023, vol. 42, no. 2, pp. 271-292, © 2022 INFORMS

MNL closely follows the performance of the full
model, our deep-Thompson approach largely outper-
form all other policies. For instance, our recommenda-
tions generate more than three times more clicks than
the Top-k strategy that myopically chooses single ban-
ners ignoring that their performance can depend on
the other ads displayed. Considering these interac-
tions are important for the design of attractive dis-
plays; in the next section, we further explore the
nature of these cross-banner interactions.

The algorithm also provides large improvements with
respect to the model with no context and the one with sta-
tionary rewards nearly doubling their CTRs. The former
result simply reinforces the importance of aligning the
marketing mix with individual preferences (Montgom-
ery and Smith 2009) and that previous purchases have
large predictive power in explaining future behavior
(Rossi et al. 1996). The latter comparison indicates that in
this setting, the CIRs effectively vary over time and that
our bandit policy calibrated using stochastic gradient
descent with momentum is effective in capturing these
variations. Again, considering the importance of adver-
tising dynamics in the marketing literature (Chen et al.
2016, Chae et al. 2019), in the next section we provide
further analysis to understand how the effectiveness of
the ads vary over time. Beyond mean rewards, the rela-
tive ordering in performance is similar if we look at the
frequency in which each algorithm generates the best
mean reward across scenarios, where we find that our
proposed model provides the largest cumulative reward
in 57.6% of the cases, whereas the Thompson-MNL ver-
sion leads to more clicks in 41.3% of the scenarios (the
remaining 0.1% correspond to the model with stationary
rewards).

The good performance of the Thompson-MNL algo-
rithm invites further discussion of its results. One
interpretation for this relatively high number of clicks
generated by this model is that the underlying linear
utility function is a good approximation of the actual
relation between context and rewards. We pose that if
the retailer only has limited data, a multinomial logit
model could suffice to generate adequate recommen-
dations. However, the availability of larger and more
complicated historical data at the individual level
should favor better perfomance of machine learning
models. Our evaluation shows that, for this case, in
terms of the magnitude, compared with the Thompson-
MNL, the proposed model already generates an addi-
tional 1.75 percentage points, which represent a 9.19%
improvement in CTRs. We expect this gain should be
even larger if, in addition of purchase in different cate-
gories, we add frequency and recency of purchases in
different categories, whether they purchase on promo-
tion, and other transactional information commonly
available for omnichannel retailers (Goic and Olivares

2019). The proposed algorithm not only exhibits better

CTRs, but it also leads to more robust solutions. In
fact, the deep-Thompson exhibits much more stable
rewards between scenarios with a reduction of three
times in the standard deviation of the rewards com-
pared with its closest contestant. In summary, despite
the good performance of the Thompson-MNL, our
results show that allowing for a deep-neural mapping
between context and rewards, we can attain meaning-
ful improvements in performance.

Beyond the aggregated performance statistics, the
evolution of the rewards provides additional insights
about how each algorithm learns dynamically. The evo-
lution of mean rewards for all recommendations poli-
cies are displayed in Figure 7. According to this figure,
deep-Thompson, Thompson MNL, and the model with
stationary rewards learn relatively quickly, exhibiting
relatively high performance in the first five days. How-
ever, the latter policy start decreasing its effectiveness
as it has no room to correct for temporal variations of
banners’ rewards over time.

It is also worth noting that the MNL models start
learning faster than the more flexible model with a deep
network. However, after a few days of training, the more
flexible deep-Thompson keeps improving, whereas the
rewards of the MNL-based models gets flatter. We
hypothesize that if the model only has a short horizon
for learning, a MNL model can provide an efficient
mechanism to connect the context to the rewards. How-
ever, the disposition of longer training periods allows
our proposed model to further learn bout more complex
relations that are not allowed in the fixed functional
form imposed by the multinomial logit.

Regarding the policies that ignore the context (No-
Context) and the existence of banner interactions (Top-
k), in Table 4, we already documented they have sizable
worst perfomance than the proposed model. From Fig-
ure 7, we can visualize that halfway to the evaluation
horizon, both policies reached their best performance.
This provides further indication that banner interactions
and context play important roles in House-Ads recom-
mendations, and therefore, managers aiming to imple-
ment automatic display decisions need to consider both
components in their policies.

Taking all these results together, we conclude that the
proposed model leads to the best performance among
all policies we evaluated. Although the Thompson-MNL
model could provide a good approximation especially
in the case with limited data, in our setting, our proposal
leads to higher and more stable click-through.

5.2. Drivers of MAB Effectiveness

In previous sections, we demonstrated that our rec-
ommendations provide significant gains with respect
to expert recommendations and alternative recom-
mendation policies. In this section, we analyze the
nature of recommendations played by the bandit



Aramayo, Schiappacasse, and Goic: Multiarmed Bandits for Ads Recommendations

Marketing Science, 2023, vol. 42, no. 2, pp. 271-292, © 2022 INFORMS

287

Figure 7. (Color online) Evolution of Mean Reward for Different Bandit Policies
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algorithms to better understand why they lead to bet-
ter performance.

Two central premises that guide our modeling
efforts are that the attractiveness of internal ads
depends on what other ads were displayed around
them and that the reward structure is nonstationary.
Based on the CTRs, we can verify if these assumptions
are indeed relevant in the context of house ads deci-
sions. As our recommendations are based on a neural
network, we have no explicit knowledge about why
some banner combinations lead to better performance.
After observing the actual recommendations of the
algorithms, we can analyze those responses to under-
stand why our MAB algorithm led to better recom-
mendations. In this section, we explore the nature of
banner interactions, we investigate the existence of
advertising wear-out, and we explore the role of users’
purchase histories in the effectiveness of our MAB
policy.

Formally speaking, let u;; be a latent utility that vis-
itor i experiences for clicking a banner j displayed on
day t. To corroborate that rewards are nonstationary
and the existence of banner interactions, we define u;;
as follows:

Uijjr = /\? + /\]ant + Z /\Zéih]- + /\pTPj + Eijt - (5)
h#j

In this specification, /\? are banner fixed effects and
capture that some ads are more attractive than others.
In the experiment, we display combinations of ads,
and therefore, every ad is displayed accompanied by
a variety of other ads. Consequently, there is no need
to omit the fixed effect of any given ad. The variable

Deep-Thompson
—== Stationary Rewards
e Top-K

=== No Context
—= Random
Thompson MNL

1y is the number of times that the ad j has been dis-
played up to day £, and therefore A}’ capture how the
attractiveness of each ad wears out. There might be
other dynamic elements that can lead to nonstationary
rewards, but in this analysis, we only consider pre-
vious exhibitions because we believe it drives most of
the temporal variation. In the model, we also have
binary indicators 6, that take the value of one if ban-
ner j was jointly shown with banner h to visitor i.
Thus, parameters Aj, capture any interaction that ban-
ner / can have when displayed with other banners. To
complete the model, we have another binary variable
TP; that takes the value of one if the combination of
ads shown to visitor i include two banners announc-
ing price discounts. Considering that some of the
available banners explicitly indicated deep price pro-
motions (e.g., 40% off), we include this variable to see
how promotions further influence customer attention.
To estimate the model, we assume that ¢;; are extreme
value distributed, and we use the data collected in
experiment 1 to calibrate a binary logit regression. In
this model, the dependent variable corresponds to
binary indicators to denote if a given visitor clicked in
a given ad.

Results of this model are displayed in Table 5.
These results are very consistent with our previous
description of the problem of house ads. First, by
looking at banner fixed effects, we find that some ads
are more attractive than others, and therefore, it is
worth exploring those differences, taking advantage
of the efficiency of a bandit policy. Second, we also
find that the attractiveness of a given ad varies over
time. In fact, half of the ads exhibit significant wear-



Aramayo, Schiappacasse, and Goic: Multiarmed Bandits for Ads Recommendations

288

Marketing Science, 2023, vol. 42, no. 2, pp. 271-292, © 2022 INFORMS

Table 5. Logistic Regression Analysis for Wearout Effects
and Promotions

Coefficient Estimate Significance
Fixed effect house ad 1 —4.49 i
Fixed effect house ad 2 —4.34 i
Fixed effect house ad 3 -2.99 E
Fixed effect house ad 4 -2.85 R
Fixed effect house ad 5 -3.91 i
Fixed effect house ad 6 —4.57 i
Wear out effect house ad 1 —1.4e-4 **
Wear out effect house ad 2 3.3e-7

Wear out effect house ad 3 —6.3e-6 o
Wear out effect house ad 4 4.6e-6

Wear out effect house ad 5 —4.0e-5 i
Wear out effect house ad 6 1.0e-5 E
Interaction with house ad 1 —-0.66 R
Interaction with house ad 2 -0.51 i
Interaction with house ad 3 0.80 i

Interaction with house ad 4 0.92 i

Interaction with house ad 5 -0.12
Interaction with house ad 6 -0.76 R
Two discounts -1.62 o

* *% and * Significance levels: 99.9%, 99%, and 95%, respectively.

out effects; that is, we found evidence that as these
banners are shown to more visitors, the likelihood of
being clicked decreases significantly. One of the ads
exhibits a positive dynamic coefficient, implying that
it got more attractive over time. This effect is probably
explained by different factors not associated to wear-
outs, but it also validates the importance of modeling
a nonstationary reward.

Parameter estimates on interaction are also suppor-
tive of our modeling approach. In fact, we find that five
of the six ads create consistent interactions. If a given
banner is jointly displayed with 1, 2, or 6, it has a lower
probability of being clicked, whereas having the com-
pany of banners 3 and 4 increases the likelihood of
being clicked. The negative effect of displaying two
house ads with explicit discounts also supports the
existence of interactions. In simple terms, this negative
coefficient indicates that a superarm that simultane-
ously displays more than one ad with a discount
underperforms compared with other combinations that
only include one banner displaying price cuts. Interest-
ingly, the bandit policies did capture most of these reg-
ularities. For example, superarm 20, which was heavily
displayed by our policies, consists of house ads 4, 5,
and 6, which is precisely the combination of ads with
the highest sum of fixed effects among combinations
with at most one price discounts.?

Another important question is if our contextual bandit
algorithm can effectively take advantage of customer-
level information. In the simulation study, we de-
monstrate the the algorithm can recover individual level
differences from an underlying linear utility model.
However, this is not guaranteed in real problems where

the relationship between purchase histories and brows-
ing behavior can be more complicated. In the actual
MAB policy, we use a neural net that can efficiently deal
with large vector of attributes. Here, as we are inter-
ested in explainability, we summarize purchase his-
tory of visitor 7 in two simple metrics: Q; is the total
number of products the visitor has purchased from the
retailer in the last two years, and D; is the number of
different categories that the customer has purchased in
the same time frame. In this summary, Q; measures
the quantity, and D; measures the diversity in the pur-
chase history. Using these metrics, we rely again in a
binary logistic regression model to describe the like-
lihood that a visitor 7 clicks in any of the recommen-
ded ads. The underlying utility function is given in
Equation (6).

0 = g + (U™Qi + " D;)MAB;
+ (uQ; + u“D;)(1 = MAB;) + & 6)

In this model, MAB; indicates whether visitor i was
assigned to the treatment. Thus, parameters p" and
capture how larger quantities in the purchase history
correlate with larger CIRs in treatment and controls.
Similarly, 4™ and p* capture how more product diver-
sity in purchase histories affect conversion in treatment
and controls. Results of this regression are reported in
Table 6.

These results indicate that diversity of previous
purchases is a strong indicator that a customer will
click in a house ad, but quantity is actually inversely
correlated with click-through. To see if our personal-
ized recommendation can take advantage of individ-
ual level data, we are interested in the difference of
the coefficients between MAB policies and the control.
Here we found that the MAB coefficients are always
larger than those associated to the controls, but the
difference is only significant for the metric of diversity
(p = 0.03). This indicates that when a customer has
purchased a wider variety of products, a contextual
bandit algorithm provides better house ads recom-
mendations than the control. Nonetheless, the total
number of products does not produce better results
by itself. This can be explained because the fre-
quency of purchases that might be associated to other

Table 6. Logistic Regression Analysis for Personalization
Effects

Coefficient Estimate Significance
Intercept -3.140 o
Quantity X control —0.008 *
Diversity X control 0.070 o
Quantity x MAB -0.006 *
Diversity x MAB 0.103 o

#** # and * Significance levels: 99.9%, 99%, and 95%, respectively.
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demographic factors and because a visitor who only
purchased in one or two categories is less likely to
have any history in categories that are related to the
products being promoted in the set of available house
ads.

6. Conclusions

In this study, we are concerned with how to decide the
display of house ads in the home page of an online
retailer. As the rewards associated to the display of
each ad are uncertain, the use of MAB policies appears
as an efficient approach to balance the dynamic learn-
ing of the effectiveness of each item and the short-term
exhibition of the most profitable ads. Moreover, as we
know individual level information for a relevant frac-
tion of the customers, the algorithm can be extended to
provide personalized recommendations for each cus-
tomer profile. The combination of bandit policies with
flexible learning to provide personalized recommenda-
tions is novel in the marketing literature, and it requires
the use of a number of complementary techniques to
capture all relevant features of the house ad problem.
To start with, the number of clicks received by an internal
ad does not only depends on their own attractiveness
but also on how attractive other products displayed
around them are. Thus, to decide about a complete
collection of ads that captures those interactions, we
use a combinatorial type of MAB algorithm. In our
implementation, instead of using the standard super-
vised learning paradigm to train the underlying neu-
ral network that maps individual-level data with
actions, we use a reinforcement learning criteria that
avoids getting stuck in local optima. Furthermore, we
allow for nonstationary rewards by giving more
importance to recent displays in the training of both
bandit algorithms.

We tested our implementation of MAB to recom-
mend house ads in two field experiments. This way,
we compared the performance of our solution against
the recommendations of an internal team of experts by
randomly assigning visitors at their arrival to one of
those conditions. Our results indicate that our method-
ology significantly outperformed the baseline and that
the improvements are relevant from a business point of
view. Moreover, in the second experiment, we also
tracked ATC rates, and they were also significantly
improved with our recommendations. This provides a
stronger signal that our system not only provides more
engagement for customers but that a better fit with cus-
tomer preferences can be monetized for larger profits.
To complement these aggregated results, we compared
the profile of actions generated by our policy to the
baseline. In addition to the larger ability to systemati-
cally explore the decision space, the bandit policies pro-
vides more diverse set of solutions. More importantly,

it captures relevant cross-effects between ads, which
provides a strong justification to decide about combina-
tions of items instead of individual ads. In our analysis,
we also included a comprehensive comparison of the
performance of our proposed bandit policy, and we
found that each of the key components of the model
contributes to higher CTRs. Based on this result, we
pose that managers interested in implementing a MAB
approach to decide personalized House Ads recom-
mendations should consider the interaction of banner
combinations and nonstationary rewards. Furthermore,
if extensive individual data are available, the use of
deep learning to map context into recommendations
could lead to an additional lift in performance.

We believe our proposed model is a step forward in
the design of personalized experiences in online retail-
ing. However, there are a number of promising ave-
nues for future research. First, in our analysis, we
decide the combination of ads to display while keep-
ing all other elements of the homepage unaltered.
Future research can relax these constraints to decide
most of the content in an integrated model. In addi-
tion, the analysis of the structure of the website can
shed a more comprehensive understanding of how
different components of the website affects conver-
sions. For example, following Tang et al. (2013), we
could expand the use MAB to learn about the most
effective layouts to display the personalized content.
Second, in our empirical evaluation, we assume cus-
tomer rewards are binary (e.g., click-through). In our
case, this is justified because, in real time, we do not
observe whether the customer actually purchased an
item or not. If that information was available, we
could use a continuous reward structure (Bertsimas
and Mersereau 2007) to prioritize those ads, leading to
more profitable product categories. Third, in terms of
the characteristics of the ads, we only consider if they
announce price discounts. However, previous research
shows that other factors such as size and spatial loca-
tion of ads can play an important role in advertising
effectiveness (Marszatkowski and Drozdowski 2013,
Goic et al. 2018). Although we have little variation in
the data to inform about the impact of these factors,
they could enrich the decision space in other bandit
applications.

The algorithm we proposed is suitable to incorpo-
rate dynamic changes in the set of available combina-
tions of ads (S) by solving the problem in batches.
However, in the experimental studies, our methods
were only tested with a constant set of ads. Given the
nature of our expert recommendation baseline that
is slow in learning about new context, we expect
that dynamic variations in S can lead to an even larger
difference with respect to the control. If the firm can
dynamically decide the duration of each arm, the
methodology could be further developed incorporating
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mortal bandits (Chakrabarti et al. 2008). Nowadays,
firms use fixed calendars for the exhibition of each the
ads. Using real-time performance to also decide the
deletion of underperforming banners is a promising
avenue for future research. In our analysis, we used a
limited set of customer level information to produce
personalized recommendations. The expansion of the
set of covariates could lead to even better results and to
a more personalized navigation experience. For exam-
ple, the results of experiment 1 provide some evidence
that the effectiveness of house ads can wear out, espe-
cially for returning customers. In the set of covariates
we used, we did not consider if the customer had been
exposed before, but this could be integrated with no
significant change in the algorithm itself. By adding
this information, the recommendations can be person-
alized not only between visitors, but also between navi-
gation sessions. Furthermore, in our investigation we
compare our policy against an extensive number of
alternative bandit policies. However, this is an active
area of research with numerous alternative algorithm
that could provide further improvements to our recom-
mendations. This is, for example, the case of regression
oracles (Foster and Rakhlin 2020) and the translation
from reinforcement learning to offline regression (Sim-
chi-Levi and Xu 2022).

In terms of scalability, the proposed methodology
should accommodate the addition of more features and
more customers with no additional burden. However,
because of its combinatorial nature, the use of larger
sets of ads could be challenging. Although in our two
empirical studies, we consider relatively small decision
spaces of 20 and 56 superarms, in other applications,
marketers might be interested in deciding about a
larger number of alternatives. We numerically simu-
lated how the computational time required to estimate
the model and make recommendations grows for
larger decision spaces and, even for a decision space of
1,000 superarms, those times only increase marginally.
Although these are promising figures, further research
is needed to corroborate them in a live setting. In this
regard, the design of efficient algorithms to scale com-
binatorial bandits is still an area of active research
(Wen et al. 2015, Wang et al. 2017).

To conclude, in this study we implemented two sep-
arated versions of bandit algorithms depending on our
ability to identify visitors at their arrival. We believe
that the contextual model can be extended to generate
recommendations to any visitor. In fact, even for cus-
tomers that enter anonymously or those who have no
previous records with the company, the retailer observe
a number of covariates that can be used to provide
some level of personalization. For example, the device
they use to visit the website (e.g., desktop computer or
mobile device) and the channel they used to visit (e.g.,
direct load, organic search) or even the time at which

they arrive. Thus, our contextual model can be used for
all customers, but for some of them, the personalization
is based on a full set of covariates that use historical
purchases and for others we only used contextual infor-
mation about how they arrived to the site.

Endnotes

' Actual purchases are observed but not in real time and therefore
they cannot be used to train the model in practice. This is because
purchases are processed by a different system that manages the
payment validation and made logistic decisions.

2 As the exact number of sales per categories cannot be disclosed, in
this illustration we multiply the series by a random number in [0.8,
1.2].

3 There are other combinations such as ads 3, 4, and 5 with a larger
sum of fixed effects, but this combination includes two discounts
and therefore, to derive its mean value we would need to discount
the coefficient A? = —1.62.
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